Naive Principal Component Analysis in Software Reliability Studies
نویسندگان
چکیده
منابع مشابه
Principal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملApplication of Principal Component Analysis in Software Quality Improvement
Statistical modeling technique has pivotal role in better understanding of the software development processes. Among them neural network techniques have enhanced predictive capability than most other statistical models. This paper explains the application of principal component analysis to neural network modeling as a way to improve predictability of neural network. The purpose of principal com...
متن کاملSensitivity Analysis of Software Reliability for Component-Based Software Applications
Abstrac The parameters in these softwa usually directly obtained from the the dynamic properties of the syste the failure data, the accurate val hard to determine. Therefore, t often used in this stage to deal with analysis provides a way to ana different parameters. In order to component-based software, we pr analyzing the reliability of the reliabilities of the individual architecture of the ...
متن کاملPrincipal component analysis based methods in bioinformatics studies
In analysis of bioinformatics data, a unique challenge arises from the high dimensionality of measurements. Without loss of generality, we use genomic study with gene expression measurements as a representative example but note that analysis techniques discussed in this article are also applicable to other types of bioinformatics studies. Principal component analysis (PCA) is a classic dimensio...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational and Theoretical Statistics
سال: 2019
ISSN: 2384-4795
DOI: 10.12785/ijcts/060104